Deprotection of Silyl Ethers Using 2,3-Dichloro-5,6-dicyano-p-benzoquinone

Kiyoshi Tanemura,*.[#] Tsuneo Suzuki[#] and Takaaki Horaguchi^b

^a School of Dentistry at Niigata, The Nippon Dental University, Hamaura-cho 1-8, Niigata 951, Japan ^b Department of Chemistry, Faculty of Science, Niigata University, Ikarashi, Niigata 950–21, Japan

In the presence of a catalytic amount of 2,3-dichloro-5,6-dicyano-*p*-benzoquinone (DDQ), triethylsilyl (TES) and *tert*-butyldimethylsilyl (TBDMS) ethers are readily hydrolysed to the corresponding alcohols in MeCN-H₂O (9:1) or tetrahydrofuran (THF)-H₂O (9:1). TES ethers are cleaved to alcohols more easily than TBDMS ethers. *tert*-Butyldiphenylsilyl (TBDPS) ethers are stable under these reaction conditions.

The popularity and extensive use of silyl ethers as protecting groups for alcohols¹ results from their ease of formation and removal and their stability to a wide range of reagents. Of such groups the most widely used are TES, TBDMS and TBDPS ethers²⁻⁴ and a variety of methods have been developed for their removal, *e.g.* hydrolysis using protic acids such as acetic acid. Since the strong acidity of protic acids is undesirable for acid-sensitive substrates, a less acidic reagent, fluorosilicic acid (H₂SiF₆) has been proposed.⁵ Tetrabutylammonium fluoride has also been used,⁶ but fluoride ion in an aprotic solvent is a strong base.⁷ Recently, Corey *et al.* reported the reductive cleavage of TBDMS ethers by diisobutylaluminium hydride⁸ and the use of SiF₄ as a selective desilylating reagent.⁹

During the course of our investigations of DDQ, we reported that DDQ can catalyse the hydrolysis of acetals to aldehydes or ketones.¹⁰ Here we report a new method for the cleavage of silyl ethers using a catalytic amount of DDQ under neutral conditions.

First, we examined the hydrolysis of dodecyl TES ether in various solvents. The results are summarized in Table 1. In MeCN-H₂O (9:1) or THF-H₂O (9:1), the reaction was complete in 1 h at room temperature to give dodecyl alcohol in 93 or 97% yield, respectively. In $CH_2Cl_2-H_2O$ (19:1), the reaction was very slow whilst in benzene-H₂O (19:1), no reaction occurred (entries 1-4). This reaction is only achieved in the presence of water, most of the dodecyl TES ether being recovered (entries 5 and 6) in its absence. Next, deprotection of various TES ethers was examined. In every case, the reaction proceeded smoothly in MeCN-H₂O or THF-H₂O within 1 h to give the corresponding alcohols in quantitative yields (entries 7-11). The reaction of the other silvl ethers, TBDMS and TBDPS ethers, was also explored. The TBDMS ethers require 3-7 h to complete the reaction (entries 12-18). The TBDMS group is less readily hydrolysed than the TES group. TBDPS ethers did not react at all under these reaction conditions (entries 19-25). The selectivity of this reaction is much the same as that described for protic acids, tetrabutylammonium fluoride, and SiF₄.

We believe that deprotection of silyl ethers with DDQ probably occurs *via* a single-electron transfer (SET) mechanism as shown in Scheme 1.¹¹

In summary, this method constitutes a new procedure for deprotection of silyl ethers under neutral conditions. Other synthetic applications of DDQ are now in progress.

a, R = SiEt₃; b, R = SiBu^t Me₂; c, R = SiBu^t Ph₂; d, R = H
Table 1 Deprotection of various silyl ethers by DDQ^a

Entry	Silyl ether	Solvent	t/h	Yield (%) ^{<i>b.c</i>}
1	la	MeCN-H ₂ O (9:1)	1	93
2		$THF - H_2 O(9:1)$	1	97
3		CH ₂ Cl ₂ -H ₂ O (19:1) 7	55 (45)
4		$C_6 H_6 - H_2 O(19:1)$	7	0 (96)
5		MeCN	1	19 (80)
6		THF	1	0 (71)
7	2a	$MeCN-H_2O(9:1)$	1	100
8		$THF - H_2O(9:1)$	1	100
9	3a	$MeCN-H_{2}O(9:1)$	1	88
10		$THF - H_2O(9:1)$	1	95
11 ^d	4a	$THF-H_{2}O(9:1)$	1	90
12	1b	$MeCN-H_2O(9:1)$	6	65 (33)
13		$THF - H_2O(9:1)$	6	86 (14)
14	2b	$MeCN-H_2O(9:1)$	3	96 (4)
15		$THF-H_2O(9:1)$	6	97 (3)
16	3b	$MeCN-H_2O(9:1)$	7	92 (4)
17		$THF-H_2O(9:1)$	7	88 (12)
18 ^d	4b	$THF-H_2O(9:1)$	7	93 (3)
19	lc	$MeCN-H_2O(9:1)$	6	0 (92)
20		$THF-H_2O(9:1)$	6	0 (96)
21	2c	$MeCN-H_2O(9:1)$	6	0 (87)
22		$THF-H_2O(9:1)$	6	0 (100)
23	3c	$MeCN-H_2O(9:1)$	6	0 (100)
24		$THF-H_2O(9:1)$	6	0 (100)
25ª	4c	$THF-H_2O(9:1)$	6	0 (100)

^a DDQ (0.1 mmol) in solvent (3.5 cm³) was added to a solution of the silyl ether (1.0 mmol) in solvent (3.5 cm³) under N₂ at room temp. ^b Isolated yields. ^c The figures in parentheses are the recovery of the starting materials. ^d In MeCN-H₂O (9:1), silyl ethers **4a**-c were not hydrolysed at all because of their insolubility to the solvent.

Experimental

M.p.s are uncorrected. IR spectra were recorded on a Hitachi I-3000 spectrophotometer. ¹H NMR spectra were measured on

- 2 E. J. Corey and A. Venkateswarlu, J. Am. Chem. Soc., 1972, 94, 6190.
- 3 E. J. Corey and T. Ravindranathan, J. Am. Chem. Soc., 1972, 94, 4013.
- 4 S. Hanessian and P. Lavallee, Can. J. Chem., 1975, 53, 2975.
- 5 A. S. Pilcher, D. K. Hill, S. J. Shimshock, R. E. Waltermire and P. DeShong, J. Org. Chem., 1992, 57, 2492; S. J. Shimshock, R. E. Waltermire and P. DeShong, J. Am. Chem. Soc., 1991, 113, 8791.
- 6 S. Masamune, M. Hirama, S. Mori, Sk. A. Ali and D. S. Garvey, J. Am. Chem. Soc., 1981, 103, 1568; E. J. Corey and B. B. Snider, J. Am. Chem. Soc., 1972, 94, 2549.
- 7 J. Hayami, N. Ono and A. Kaji, Tetrahedron Lett., 1968, 1385.
- 8 E. J. Corey and G. B. Jones, J. Org. Chem., 1992, 57, 1028.
- 9 E. J. Corey and K. Y. Yi, Tetrahedron Lett., 1992, 33, 2289.
- 10 K. Tanemura, T. Suzuki and T. Horaguchi, J. Chem. Soc., Chem. Commun., 1992, 979.
- 11 For alcoholysis of epoxides with DDQ via a SET mechanism, see N. Iranpoor and I. M. Baltork, *Tetrahedron Lett.*, 1990, **31**, 735.
- 12 H. Adkins and K. Folkers, J. Am. Chem. Soc., 1931, 53, 1095.

Paper 2/05095A Received 23rd September 1992 Accepted 24th September 1992

a Hitachi R-24B spectrometer using Me_4Si as the internal standard. Column chromatography was performed on Wakogel C-200 silica gel. DDQ was recrystallized from benzene-hexane.

Typical Procedure for Deprotection of Silyl Ethers.—To a solution of dodecyl TES ether **1a** (300 mg, 1.0 mmol) in MeCN– H_2O (9:1) (3.5 cm³), was added a solution of DDQ (23 mg, 0.1 mmol) in MeCN– H_2O (9:1) (3.5 cm³). After the mixture had been stirred for 1 h at room temp. under N₂ it was evaporated and the residue was chromatographed (benzene–ether = 2:1) on silica gel to give dodecyl alcohol **1d** (173 mg, 93%) as a colourless crystalline solid, m.p. 24 °C (aqueous EtOH) (lit.,¹² 24 °C); v_{max} (neat)/cm⁻¹ 3336 (OH); δ_{H} (CDCl₃) 0.92 (3 H, t, J 6, CH₃), 1.10–1.78 (20 H, br s, CH₂), 1.89 (1 H, s, OH) and 3.67 (2 H, t, J 6, CH₂).

References

1 T. W. Greene, *Protective Groups in Organic Synthesis*, Wiley-Interscience, New York, 1981; E. Colvin, *Silicon in Organic Synthesis*, Butterworths, London, 1981.